Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(–)-*α*-lsosparteine copper(II) diazide¹

Bun-Joo Kim,^a Yong-Min Lee,^a Eun Hee Kim,^b Sung Kwon Kang^b and Sung-Nak Choi^a*

^aDepartment of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Pusan 609-735, South Korea, and ^bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, South Korea Correspondence e-mail: sunachoi@pusan.ac.kr

Received 26 March 2002 Accepted 1 May 2002 Online 31 May 2002

In the title complex, $[Cu(N_3)_2(C_{15}H_{26}N_2)]$, the Cu atom is surrounded by the two N atoms of the chelating (-)- α isosparteine ligand and another two N atoms from the two azide anions, forming a distorted CuN₄ tetrahedron. The two azide anions are terminally bound to the Cu^{II} atom, and the dihedral angle between the N_{sparteine}-Cu-N_{sparteine} and N_{azide}-Cu-N_{azide} planes is 50.0 (2)°.

Comment

The crystal structures of several copper(II) complexes with the neutral alkaloid (–)-sparteine $(C_{15}H_{26}N_2)$ and its diastereomer, (-)- β -isosparteine, have been determined by several workers (Childers et al., 1975; Choi et al., 1995; Kim et al., 2001; Lee et al., 1998, 2000; Lopez et al., 1998). It has been recognized that, with one exception (Lee et al., 1998), sparteine copper(II) complexes are four-coordinate and tetrahedrally distorted (Childers et al., 1975; Choi et al., 1995; Kim et al., 2001; Lee et al., 2000; Lopez et al., 1998). The pseudo-tetrahedral geometry around the Cu^{II} centre of these complexes is due to the steric requirements imposed by the bulky chelating sparteine ligand. However, the anionic ligands L in complexes of the type $[Cu(L)_2(C_{15}H_{26}N_2)]$ are also important in controlling the molecular structures. The X-ray crystallographic structures of sparteine-copper(II) complexes have shown that the average dihedral angles between the L_2 Cu and N_2 Cu planes in these complexes are in the range $31.7-87.3^{\circ}$ (Childers et al., 1975; Choi et al., 1995; Kim et al., 2001; Lee et al., 2000; Lopez et al., 1998). (-)- α -Isosparteine, one of three diastereomers of sparteine, has been reported to react with Cu^{II} halides to produce the corresponding stable complexes (Boschmann *et al.*, 1974), although no structures of $(-)-\alpha$ isosparteine copper(II) complexes have been reported. The present investigation of (-)- α -isosparteine copper(II) diazide, (I), was also prompted by the possibility of the complex having

¹ Alternative name: $bis(azido-\kappa N)$ {1,3,4,7,7a,8,9,10,11,13,14,14a-dodecahydro-7,14-methano-2*H*,6*H*-dipyrido[1,2-*a*:1',2'-*e*][1,5]diazocine-*N*,*N*'}copper(II).

a tetrahedrally distorted $Cu^{II}N_4$ chromophore, and the likely influence of the azide anion on the molecular structure.

In complex (I), the Cu atom is surrounded by two N atoms (N1 and N9) of the chelating (-)- α -isosparteine ligand and by two N atoms (N18 and N21) of the two azide anions, forming a distorted CuN₄ tetrahedron. All four of the six-membered rings in the coordinated (-)- α -isosparteine have a chair conformation. The conformation of the coordinated (-)- α -isosparteine in (I) consists of two terminal rings folded down over the Cu^{II} atom (*endo*), identical to the conformation of the free ligand (Boschmann *et al.*, 1974; Wrobleski & Long, 1977).

The molecule of (I) possesses a nearly perfect twofold axis of rotation along a line through atoms C17 and Cu. Two azide anions are bound terminally to the Cu^{II} atom. The N1–Cu–N9 plane is twisted by 50.0 (2)° from the N18–Cu–N21 plane.

The Cu^{II}–azide distances (Table 1) found in (I) are similar to the Cu^{II}–N distances found in other copper(II) complexes containing a terminally bound azide ligand (Goher *et al.*, 2001; Grove *et al.*, 2001). Cu–N_{sparteine} bond lengths of approximately 2.0 Å have previously been established for several other sparteine copper(II) complexes (Childers *et al.*, 1975; Choi *et al.*, 1995; Kim *et al.*, 2001; Lee *et al.*, 1998, 2000; Lopez *et al.*, 1998).

Figure 1

A view of the molecule of (I) showing the atom-numbering scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

The coordinating azide anions are nearly linear, but the (Cu)-N-N bonds are longer than the (Cu-N)-N-N bonds. This result, together with the non-linear M-N-N angle, suggests that the covalency in copper(II)-azide bonding is appreciable and that the main contribution to the ground-state geometry of the coordinated azide is provided by the two canonical structures $-N=N^+=N^- \leftrightarrow -N^--N^+\equiv N$.

Experimental

(–)- α -Isosparteine was derived from commercially available (–)sparteine according to the literature method of Leonard & Beyler (1950). The precursor copper(II) complex, [Cu(NO₃)₂(C₁₅H₂₆N₂)], was prepared in a glove-box by mixing a solution of copper(II) nitrate in ethanol-triethylorthoformate (5:1 ν/ν) with a stoichiometric amount of (–)- α -isosparteine. The resulting blue precipitate was filtered off, washed with cold absolute ethanol and dried in a vacuum. Complex (I) was prepared by the reaction of [Cu(NO₃)₂(C₁₅H₂₆N₂)] with a stoichiometric amount of NaN₃ in an ethanol-triethylorthoformate (5:1 ν/ν) solution. Single crystals of (I) were obtained by recrystallization at about 278 K from a solution in dichloromethane-triethylorthoformate (5:1 ν/ν) under carbon tetrachloride vapour.

Crystal data

$\begin{bmatrix} Cu(N_3)_2(C_{15}H_{26}N_2) \end{bmatrix}$ $M_r = 381.98$ Orthorhombic, $P2_12_12_1$ a = 8.1517 (16) Å b = 13.4955 (12) Å c = 15.486 (2) Å V = 1703.6 (4) Å ³ Z = 4 $D_x = 1.489$ Mg m ⁻³	Mo $K\alpha$ radiation Cell parameters from 40 reflections $\theta = 6.2-12.6^{\circ}$ $\mu = 1.30 \text{ mm}^{-1}$ T = 296 (2) K Block, dark brown 0.38 × 0.22 × 0.20 mm
Data collection	
Bruker P4 diffractometer	$R_{\rm c} = 0.023$
$2\theta/\omega$ scans	$\theta = 27.5^{\circ}$
Absorption correction: ψ scan	$h = -1 \rightarrow 10$
(North <i>et al.</i> 1968)	$k = -1 \rightarrow 17$
$T_{\rm min} = 0.717, T_{\rm max} = 0.772$	$l = -1 \rightarrow 20$
2930 measured reflections	3 standard reflections
2741 independent reflections	frequency: 97 min

Table 1

Selected geometric parameters (Å, °).

1431 reflections with $I > 2\sigma(I)$

Cu-N21	1.931 (5)	N18-N19	1.200 (7)
Cu-N18	1.958 (6)	N19-N20	1.161 (8)
Cu-N1	2.039 (5)	N21-N22	1.186 (8)
Cu-N9	2.050 (5)	N22-N23	1.164 (8)
N21-Cu-N18	99.6 (2)	N1-Cu-N9	89.0 (2)
N21-Cu-N1	146.1 (3)	N19-N18-Cu	118.1 (5)
N18-Cu-N1	96.2 (2)	N20-N19-N18	175.7 (8)
N21-Cu-N9	96.9 (2)	N22-N21-Cu	122.5 (5)
N18-Cu-N9	141.2 (3)	N23-N22-N21	177.0 (7)

intensity decay: none

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
$R[F^2 > 2\sigma(F^2)] = 0.052$	$\Delta \rho_{\rm max} = 0.68 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.087$	$\Delta \rho_{\rm min} = -0.42 \text{ e } \text{\AA}^{-3}$
S = 1.08	Extinction correction: SHELXL97
2741 reflections	(Sheldrick, 1997)
218 parameters	Extinction coefficient: 0.0032 (3)
H-atom parameters constrained	Absolute structure: Flack (1983),
$w = 1/[\sigma^2(F_o^2) + (0.0101P)^2]$	497 Friedel pairs
where $P = (F_o^2 + 2F_c^2)/3$	Flack parameter $= 0.00(3)$

The positional parameters of the H atoms of the sparteine ligand were calculated geometrically and they were then constrained to ride on their attached atoms, with C-H = 0.97-0.98 Å and $U_{\rm iso}(\rm H) = 1.2U_{eq}(\rm C)$.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

This research was supported by the Korean Science and Engineering Foundation (KOSEF project No. R01-2001-000055-0).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1202). Services for accessing these data are described at the back of the journal.

References

- Boschmann, E., Weinstock, L. M. & Carmack, M. (1974). Inorg. Chem. 13, 1297–1300.
- Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Childers, L. S., Folting, K., Merritt, L. L. Jr & Streib, W. E. (1975). Acta Cryst. B31, 924–925.
- Choi, S.-N., Kwon, M.-A., Kim, Y., Bereman, R. D., Singh, P., Knight, B. & Seff, K. (1995). J. Coord. Chem. 34, 241–252.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Goher, M. A. S., Escuer, A., Mautner, F. A. & Al-Salem, N. A. (2001). Polyhedron, 20, 2971–2977.
- Grove, H., Julve, M., Lloret, F., Kruger, P. E., Törnroos, K. W. & Sletten, J. (2001). Inorg. Chem. Acta, 325, 115–124.
- Kim, Y.-J., Kim, S.-O., Kim, Y.-I. & Choi, S.-N. (2001). Inorg. Chem. 40, 4481– 4484.
- Lee, Y.-M., Choi, S.-N., Suh, I.-H. & Bereman, R. D. (1998). Acta Cryst. C54, 1582–1584.
- Lee, Y.-M., Chung, G., Kwon, M.-A. & Choi, S.-N. (2000). Acta Cryst. C56, 67– 68.
- Leonard, J. J. & Beyler, R. E. (1950). J. Am. Chem. Soc. 72, 1316.
- Lopez, S., Muravyov, I., Pulley, S. R. & Keller, S. W. (1998). Acta Cryst. C54, 355–357.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst, A24, 351– 359
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1996). XSCANS. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wrobleski, J. T. & Long, G. J. (1977). Inorg. Chem. 16, 704-709.